JavaScript (Node.js) Quick Start Guide for v1-embeddings API
Last updated January 24, 2025
This article is a work in progress, or documents a feature that is not yet released to all users. This article is unlisted. Only those with the link can access it.
Table of Contents
The Heroku Managed Inference and Agent add-on is currently in pilot. The products offered as part of the pilot aren’t intended for production use and are considered as a Beta Service and are subject to the Beta Services terms at https://www.salesforce.com/company/legal/agreements.jsp.
The Cohere Embed Multilingual (cohere-embed-multilingual
) model generates vector embeddings (lists of numbers) for provided text inputs. These embeddings can be used in various applications, such as search, classification, and clustering. This guide describes how to access the v1-embeddings API using JavaScript.
Prerequisites
Before making requests, provision access to the model of your choice.
If it’s not already installed, install the Heroku CLI. Then install the Heroku AI plugin:
heroku plugins:install @heroku/plugin-ai
Attach the embedding model to an app of yours:
# If you don't have an app yet, you can create one with: heroku create $APP_NAME # specify the name you want for your app (or skip this step to use an existing app you have!) # Create and attach the embedding model to your app, $APP_NAME. heroku ai:models:create -a $APP_NAME cohere-multilingual --as EMBEDDING
Install the necessary
axios
package:npm install axios
JavaScript Example Code
const axios = require('axios');
// Assert that environment variables are set
const EMBEDDING_URL = process.env.EMBEDDING_URL;
const EMBEDDING_KEY = process.env.EMBEDDING_KEY;
const EMBEDDING_MODEL_ID = process.env.EMBEDDING_MODEL_ID;
if (!EMBEDDING_URL || !EMBEDDING_KEY || !EMBEDDING_MODEL_ID) {
console.error("Missing required environment variables.");
console.log("Set them up using the following commands:");
console.log("export EMBEDDING_URL=$(heroku config:get -a $APP_NAME EMBEDDING_URL)");
console.log("export EMBEDDING_KEY=$(heroku config:get -a $APP_NAME EMBEDDING_KEY)");
console.log("export EMBEDDING_MODEL_ID=$(heroku config:get -a $APP_NAME EMBEDDING_MODEL_ID)");
process.exit(1);
}
async function parseEmbeddingOutput(response) {
if (response.status === 200) {
console.log("Embeddings:", response.data.data);
} else {
console.log(`Request failed: ${response.status}, ${response.statusText}`);
}
}
async function generateEmbeddings(payload) {
try {
const response = await axios.post(`${EMBEDDING_URL}/v1/embeddings`, payload, {
headers: {
'Authorization': `Bearer ${EMBEDDING_KEY}`,
'Content-Type': 'application/json'
}
});
await parseEmbeddingOutput(response);
} catch (error) {
console.error("Error generating embeddings:", error.message);
}
}
// Example payload
const payload = {
model: EMBEDDING_MODEL_ID,
input: ["Hello, I am a blob of text.", "How's the weather in Portland?"],
input_type: "search_document",
truncate: "END",
encoding_format: "float"
};
// Generate embeddings
generateEmbeddings(payload);